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POWER- SPECTRAL- DENSITY RELATIONSHIP FOR 

RETARDED DIFFERENTIAL EQUATIONS 

By L. Keith Barker 
Langley Research Center 

SUMMARY 

The power-spectral-density (PSD) relationship between input and output of a set of 
l inear differential-difference equations of the retarded type with real constant coefficients 
and delays is discussed. The form of the PSD relationship is identical with that applicable 
to unretarded equations. Since the PSD relationship is useful if and only if the system 
described by the equations is stable, the stability must be determined before applying the 
PSD relationship. Since i t  is sometimes difficult to determine the stability of re tarded 
equations, such equations a r e  often approximated by simpler forms. I t  is pointed out that 
some common approximations can lead to erroneous conclusions regarding the stability of 
a system and, therefore, to the possibility of obtaining PSD resul ts  which are not valid. 

INTRODUCTION 

The relationship between input and output of physical systems which can be described 
in t e rms  of l inear differential equations with constant coefficients can be described in sev- 
eral ways. 
impulse or  in te rms  of a transfer function. For sinusoidal inputs of various frequencies 
the response may be expressed in t e rms  of a frequency-response function. Fo r  random 
inputs the power-spectral-density (PSD) relationship between the input and output may be 
obtained by use of the techniques of generalized harmonic analyses. In order  for the fre- 
quency response or  the PSD relationship to be meaningful, however, the system described 
by the equations must be stable. 
relationship between input and output for  physical systems which can be described by 
retarded differential-difference equations. 
the action of a state variable on the system. 

This  relationship may be expressed either in t e rms  of a response to a unit 

The purpose of the present study is to discuss the PSD 

These systems occur when there is a delay in 

Basically, a differential-difference equation of the retarded type is a differential 
equation in which the highest order  derivative of the dependent variable contains no delay 
in i t s  argument (time), whereas in any of i t s  other derivatives or  in the dependent variable 
itself, delays may occur. Some specific applications of these equations are contained in 
re ferences  1 to 7. 



SYMBOLS 

A ’A2 N x N matrices of real constants 

real constants 
all ’a12’a21’a22 

a011~a012’a021’a022 

L 

b N x 1 vector of real constants 

Cm 

CZ 

Pitching moment 
pitching- moment coefficient, - 

SSWE 

Force in Z-direction Z-force coefficient, - 
qsw 

real constants 

mean aerodynamic chord, m 

real constants 

transfer function between x‘ and u 

frequency-response function (see eq. (8)) 

impulse-response function (see eq. (6)) 

N x N identity matrix 

integers 

radius o1 gyration about Y-axis, m 

integer 

mass ,  kg 

dimension of system 



Q 

S 

t 

U 

V 

X 

-L 

X 

a! 

ja!2 

Y 

0 

7 

number of delays in system 

pitch rate, rad/sec 

dynamic air pressure ,  N/m2 

wing area, m 2 

characterist ic root (complex variable, u + i w )  

t ime, sec 

sca la r  forcing function 

airspeed, m/sec 

N X N real transition matrix 

N-dimensional state vector 

angle of attack, rad 

gust angle of attack, rad 

real constants 

real constants 

dummy integration variable 

change in downwash at tail per  unit change of wing angle of attack 

real and constant time delays, respectively 

real par t  of s 

Tail length, 
V 

transport  time lag, 

power spectral  density of u, (Amplitude)2 - sec  
rad 
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power spectral  density of g, (Amplitude)2 - s e c  
rad @x 

0 imaginary par t  of s, rad/sec 

Superscripts: 

* crit ical  or touch-point value 

T transpose 

Dots over symbols denote derivatives with respect  to time. An ar row over a symbol 
denotes a vector. 
represents the norm of a matrix. 

(The same symbol without the arrow is scalar.)  The notation 11 1 1  

ANALYSIS 

Response of a Retarded System 

In this study a retarded system means a system described by a se t  of l inear 
differential-difference equations of the retarded type with real constant coefficients and 
delays; that is, 

$(t) = A ?(t) + Alg(t-Oz) + b’ u(t) 
Z = O  

where A and Az 
N X 1 constant vector, u(t) is a scalar  input function of time, and 
delay (transport lag). 

a r e  N X N constant matr ices ,  T( t )  is an N x 1 state vector,  b’ is an 

Oz is a constant time 

The general solution of equation (1) is (see ref. 8) 
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where X(t) is the state transition matrix of equation (1) and is the solution of the 
equation 

1 with 

x(0)  = I 

Solving equation (3) can be thought of as sequentially solving a set of ordinary differ- 
ential equations with constant coefficients. The existence and continuity of X(t) follow 
from the well-developed theory of ordinary differential equations. (See ref. 9.) 

The separate responses due to the initial conditions on z ( t )  and due to the forcing 
function u(t) are clearly shown in equation (2). The response due to the forcing function 

l is 

It  is assumed that u(t) = 0 for  t < 0, so that equation (4) can be transformed into the 
famil iar  convolution o r  Duhamel integral 

where 

is known as the impulse-response function. 

PSD Relationship Between Input and Output of the Retarded System 

The power-spectral-density (PSD) relationship between output x'(t) and input u(t) 
is derived in the  usual manner by means of equation (5) (see refs. 10 and 11, for  example) 
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and the derivation will not be given here. The relationship is 

where $I&) and qU(o) are the power spectral  densities of ?(t) and u(t), respec- 
tively, and 

4 
Hx(iw) = Sm $(t) e-iwt dt 

- W  

is called the frequency-response function. The lower l imit  of zero  on the latter integral 
in equation (8) occurs because hx(t) = 0 for  t < 0. 

+ 

The characterist ic equation corresponding to equation (3) is 

Q 
det SI - A - 1 A I e - " j  = 0 ( I = O  

(9) 

-c 

It can be seen from equation (3) that any column vector of X(t), say X.(t), satisfies the 
retarded equation 

1 

Q 

1= 0 

which also has  the characterist ic equation (9). To each characterist ic root 
sr = (3 + iw ,  of equation (9), there  corresponds a nonzero vector Cr such that 

Cresrt is a solution of equation (10). (See ref. 9.) Therefore, unless ur < 0, equa- 
tion (8) is not meaningful. If or 5 -p < 0, then it can be shown that 

-0 

r - 

where K and p are positive constants (refs. 8 and 9). It follows by using equation (11) 
that Hx(iw) is bounded. If the integral in equation (8) exists for each element of X(t), 

then Hx(io) exists. This existence is easily established by using the norm of refer- 
ence 9, equation (ll), and a theorem on page 29 of reference 12. 

3 

3 
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Before proceeding, consider the following practice, which can lead to erroneous 
results. The transfer function of equation (1) is defined as 

z ( s )  = lom $(t) dt 

Notice that equation (12) with s = io is identical in form with equation (8); consequently, + 
a common practice of getting H, is to obtain the transfer function and then se t  s = io. 
This procedure will lead to invalid PSD resul ts  if the system is not stable, because in this 
case the magnitude of the transfer function can be finite, whereas the magnitude of the 
frequency-response function can be infinite. 
equation (zero lags)  

For example, consider the scalar differential 

G( t )  - x(t) = u(t) (13) 

In this case, the impulse-response function is 

hx(t) = et 

The transfer function is, if 0 > 1, 

m t  1 
Gx(s) = 1 e dt = - s -  1 0 

and the frequency-response function is 

og 

H,(iw) = lom e t e - i o t  dt = 1 k o s  (ut)  + i s in  (cotjet dt 
0 

Formally,  setting s = io in equation (15) and substituting the resulting expression 

(GX(iw) = A) 1 0  - 1 into equation (7) for  Hx(iw) resul t  in -+ 

3 
However, Hv(iw) rz(-iodT in equation (7) is infinite, as can be seen by examining 

n L A  A 
the magnitude of equation (16). The point is: Make s u r e  the system is stable before 
setting s = i w  in the transfer function to get the frequency-response function. 
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Approximating the Stability of a Second-Order 

Retarded System 

Since the PSD relationship (eq. (7)) is used only if  the system i s  stable, i t  is neces- 
sary to determine the stability of the retarded system prior  to applying the relationship. 
There a r e  several methods of doing this. (See refs. 13 and 14.) 

Retarded systems are often approximated with ordinary differential equations for  
simplification. 
resul ts  concerning stability, and, therefore, application of the PSD relationship (eq. (7)) 
can be invalid. 

However, some of the more common approximations can lead to erroneous 

- el s If any delay (32 in equation (9) is not zero,  the resulting exponential t e rm e 
causes equation (9) to be transcendental, s o  that it has an infinite number of roots. Approx- 
imations a re  often used to simplify the analysis of such problems. The following second- 
order  system is examined to show the variation in resul ts  which can occur for  various 
approximations : 

;(t) + 2(t- 0) + x(t- e)  = f (t) (18) 

where x(t) and f ( t )  are scalar functions. 

The transfer function of equation (18) is 

and the characteristic equation is 

2 s + (s + l)e-es = o 

To approximate the transfer function or  characterist ic equation with one that is not tran- 
scendental, the exponential t e rm e- is replaced by various approximations, such as 

8 

-8s  - 2  - es 
2 + es 

e -  

(from ref. 3) 

(first- order  Pad6 approximation, ref. 15) 



Another approximation considered here is 

where j 2 3 .  

I Using any one of the approximating equations (21), (22), (23), o r  (24) in equation (19) 
results in  a modified t ransfer  function with a new characterist ic equation given by a poly- 
nomial equation in s. The negativeness of the real par t s  of the roots  of this resulting 
characterist ic equation can be examined by means of the Routh stability criteria. (See 
ref. 16.) The resu l t s  a r e  shown in table I. 

Shown in table I are the values of the delay e for  which the resulting system is 
stable when the various approximations are used. The resul ts  vary from 8 = 0 (case 4) 
to 6 < 1 (cases 1 and 2). The correct  range 0 < 0.71 was obtained from reference 13. 
It is interesting to note f rom case 4 that regardless of how accurately e' is approxi- 
mated by a Maclaurin series beyond four te rms ,  there is always a root with a nonnegative 
real par t  for any nonzero delay. Also note that the Pad6 approximation (case 3) is very 
close to the exact resul t  of case 5. 

TABLE 1.- RANGES OF VALUES OF TIME DELAY 0 WHICH YIELD ROOTS WITH 

NEGATIVE REAL PARTS WHEN VARIOUS APPROXIMATIONS ARE USED 

Case 

1 

2 

3 

4 

5 

Expression used for 
e- es 

1 - es 

1 - 
1 + es 

2 -  es 
2 + es 

2=2  

e- es 

Range of 6 which 
resu l t s  in c < 0 

e < 0.76 

e =  o 

e < 0.71 
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Stability of Retarded Short -Period-Mode Equations for  Airplane 

(With Controls Fixed) in Turbulence 

In reference 2 the short-period-mode equations of a rigid airplane flying in turbu- 
lence a r e  formulated in such a manner that a retarded system results.  
these equations a r e  used to make PSD computations, and it is assumed that the PSD com- 
putations are valid because the system appears to be stable when the approximating equa- 
tion (21) is used, The exact stability of the controls-fixed case  of reference 4 is examined 
in this section. 

With 0 = T, the retarded short-period-mode equations for a rigid airplane flying in 

In reference 4 

turbulence (with controls fixed) a r e  

= Ill a l j  1"1'3 + pll 2'1 

a21 "22 q(t) a021 a022 

where 

a12 = 1 + - 
mV 

10 
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a012 = O 

"022 = O 

The characterist ic equation of equation (25) is 

s 2 + c l s  + co + doe-eS + dlse-es = 0 

where 

c1 = -(a11 + "22) 

c O = a  a 11 22 - a12a21 

do = -a12a021 + a22a011 

dl = 

The input-output relation (eq. (7)) can be applied to equation (25) if all roots of the 
characterist ic equation (26) have negative real parts (Le., if the system is stable). The 
difficulty, of course,  is that the number of roots of equation (26) is infinite if 6 f 0. 
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With zero delay (8 = 0),  equation (26) becomes 

s2 + c1 + d s + (co + do) = 0 ( 1) 

The roots of equation (27) a r e  easily determined. In order  for  the stability to change as 
the delay is continuously increased from 8 = 0 to 8 = 7, a root-locus curve must touch 
the imaginary axis. The value of the delay 8* and the touch point (O,w*), where the root- 
locus curve touches the imaginary axis, are easily computed in this case  by means of the 
technique of reference 14. From equation (26), the values of w* and 8* (for s = i w )  
are related by 

*. * * (w*)2 - co - c l w  1 , - iw 8 = 
do + dlw*i 

This equation is equivalent to the following two equations: 

+ C2(W*)2 + c3 = 0 

and 

where 

and 

c3 = co 2 - do2 
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Only the r ea l  values of w* in equation (29) are of interest;  in aGuLtion, only posi- 
tive values need be considered, since the root-locus curves are symmetric about the real 
axis. The values of w* which satisfy equation (29) are 

Any rea l  positive values of w* are easily found from equation (31). If such values 
exist, equation (30) can be used to compute the value of the delay when a touch point occurs. 

For many systems,  either equation (31) does not yield a positive real root o r  equa- 
tion (30) gives a value of delay larger  than the desired delay. In either case, the system 
only has roots with negative real parts,  and provided this is also t rue  for  equation (27), 
the PSD input-output relation holds. 

Table II contains values of the various airplane characterist ics used in reference 4. 
Using values f rom table U to compute the coefficients in equation (27) gives 

c1 + dl  4 sec-' 

c + do i=: 19 sec-2 0 

Since c1 + dl > 0, the system is stable when 0 = 0. Also, for  c2 and c3 the values 
shown in table II give 

- 2  c2 = -37 sec 

-4 c3 = 655 sec  

Since c22 - 4c3 < 0 in equation (31), there  a r e  no real values of w*, or  no touch points. 
Thus, the input-output relation (eq. (7)) is valid for the desired case 0 =. T. 
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TABLE 11.- AXPLANE MASS, DIMENSIONS, FLIGHT CONDITION, 

AND AERODYNAMIC CHARACTERISTICS 

Mass,  m , k g . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Wingarea,  Sw, m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Mean aerodynamic chord, E ,  m . . . . . . . . . . . . . . . . . . . . . . . .  
Radius of gyration about Y-axis, k y ,  m . . . . . . . . . . . . . . . . . . .  
Taillength,  m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
T r u e  airspeed, V, m/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Altitude, m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Dynamic pressure,  4, N/m2 . . . . . . . . . . . . . . . . . . . . . . . . .  

2 

. p e r r a d i a n . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5669.905 
39.019 

1.981 
2.572 
7.742 

108.893 
3048 

5 3 64.030 
- 5.3243 

. p e r r a d i a n . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -0.682 

, per r a d i a n . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(Cma)t, per rad ian .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0.576 

-2.665 

0.2884 

~ , s e c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.071 

a€ 
aa 
-...................*................ 

CONCLUDING REMARKS 

The form of the power -spectral-density (PSD) relationship between input and output 
of a system of retarded linear differential-difference equations with real constant coeffi- 
cients and delays is the same as that for unretarded equations, and, as usual, the PSD 
relationship is meaningful if and only if the system is stable. 

The stability of retarded equations is generally difficult to determine; consequently, 
the equations are often approximated by ordinary differential equations to  examine the sta- 
bility. It is shown that some common approximations can lead to significantly different 
conclusions regarding system stability and, therefore ,  to  the possibility of obtaining PSD 
results which are not valid. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., August 28, 1974. 
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